truss analysis

Intro to OpenSeesPy | DegreeTutors.com

An Introduction to OpenSees and OpenSeesPy for 2D Truss Analysis

In this tutorial, we’ll take a first look at OpenSeesPy, a Python library for performing finite element analysis based on the OpenSees framework. By the end of this tutorial, you’ll be able to perform 2D truss analysis using OpenSeesPy. I suspect you’ll also be very keen to explore OpenSeesPy further after you see how powerful it is! OpenSees, and by extension OpenSeesPy can be tricky to get started with. The learning curve is relatively steep, but there is a huge amount of functionality packed into the library, so it’s worth persevering with.

3D-Spaceframe | DegreeTutors.com

3D Truss Calculator – Quick Start Guide

Welcome to this quick start guide on how to use the 3D truss analysis toolbox. In this tutorial, we’ll work through the solution of a sample 3D space frame (pin-jointed) structure. We’ll determine reaction forces, axial forces and nodal displacements. By the end of this tutorial, you’ll be comfortable using the toolbox to analyse your own structures. In the video accompanying this tutorial, we’ll also use the Blender modelling template file provided to model and analyse a structure from scratch. Like the 2D toolbox, students in particular, should find it helpful as a quick and easy tool for generating structural response data.

Structural Analysis Guide | DegreeTutors.com

A Complete Guide to Learning Structural Analysis

Learning how to use mathematics and mechanics to analyse structural behaviour is among the most challenging topics student engineers struggle with. Yet, for an engineer, particularly one involved in the analysis and design of structures, a firm grounding in fundamental structural behaviour is essential. In this post, I want to provide a complete structural analysis guide – a roadmap for learning structural analysis from the beginning; what to study, in what order and why.

Free Truss Calculator | DegreeTutors.com

Free Truss Calculator – Quick Start Guide

This is a quick start guide for our free online truss calculator. Follow this short text tutorial or watch the Getting Started video to quickly orientate yourself with this handy free tool. We’ll walk through the process of analysing a simple truss structure. By the end, you’ll be comfortable using the truss calculator to quickly analyse your own truss structures. Students, in particular, should find it helpful as a quick and easy tool to test manual solutions against.

Truss-Analysis | DegreeTutors.com

Truss Analysis using the Method of Joints and Method of Sections

In this tutorial we’re going to focus on trusses, also known as pin-jointed structures. We’ll briefly discuss their key features and methods of analysis. We’re going to start at the very beginning by briefly considering what exactly a truss is – but we’ll very quickly move on to truss analysis and demonstrate the joint resolution method and method of sections with some worked examples.

Transmission-tower | DegreeTutors.com

Truss Analysis using the Direct Stiffness Method

In this tutorial we examine the Direct Stiffness Method and work our way through a detailed truss analysis. By the end of this complete introduction, you should understand the basic ideas behind why the method works, how to implement it for truss analysis and you should understand the power and scalability of the technique. Once understood, the direct stiffness method opens the door to structural analysis of large scale complex structures.

Structural Analysis | DegreeTutors.com

Structural Analysis

Structural analysis is the process of using mathematical and mechanical principles to determine the magnitude of internal forces in a structure. One of the main roles of a civil or structural engineer is carrying out structural analysis as the first step to designing a safe structure. In this tutorial we’ll demonstrate exactly how this process works for a real world structure.

Fort Atkinson pinned Pratt truss bridge

What is a Truss?

A truss is a structure that consists of a collection of elements connected at pin joints or nodes. In theory, the pin joints provide no rotational resistance and behave as hinges. In practice this is not always the case.

In this tutorial, we’ll discuss common forms of truss, their features, approximate methods of analysis and the key assumptions that relate to our analysis.