Dr Seán Carroll

Dr Seán Carroll is the founder and lead tutor at DegreeTutors.com, an online education platform producing online courses and tools in the field of civil and structural engineering. Before starting DegreeTutors.com, he spent ten years teaching students about engineering analysis and design at the University of Exeter, Warwick University and The University of Nottingham. Before his academic career, he worked as a structural design engineer for Tobin and Arup Consulting Engineers in Dublin. He holds a first-class honours degree in structural engineering, a master’s degree in civil engineering and a PhD in civil engineering structural dynamics. He is a Chartered Engineer and a Fellow of the Higher Education Academy.

Second Moment of Area | DegreeTutors.com

Calculating and Interpreting the Second Moment of Area

This tutorial focussed on the second moment of area, also known as the moment of inertia. By the end of this tutorial, you should be comfortable explaining what the second moment of area is, why it’s important to engineers, how to calculate it and how to interpret the values in the context of civil and structural engineering. We’ll cover how to identify the location of the centroid of a cross-section shape, how to calculate the different moments of inertia and how to use the parallel axis theorem to compute second moments of area for compound cross-section shapes.

Moment redistribution | DegreeTutors.com

How moment redistribution leads to more efficient designs

In this tutorial, we’ll discuss moment redistribution in reinforced concrete and how we can use it to our advantage to achieve more efficient designs. When designing any structural element, our first pass usually involves an elastic analysis. However, this approach can leave some structural capacity untapped. We’ll see how we can use the plastic behaviour of reinforced concrete at the ultimate limit state to develop more efficient designs by redistributing moments within the structure. We’ll do this by first explaining the moment redistribution behaviour in a statically indeterminate structure and then exploring what it means for the design of reinforced concrete sections.

Intro to reinforced concrete | DegreeTutors.com

Reinforced Concrete Fundamentals: Analysis and Design of Steel Reinforcement

In this tutorial, we’ll introduce the role of steel reinforcement in reinforced concrete design. We’ll see that steel plays a critical role in developing an internal moment of resistance and compensates for concrete’s inherent brittleness and weakness in tension. We’ll explore the fundamental mechanical model used to describe the behaviour of the cross-section under load. We’ll also see that to avoid a brittle failure, we must limit the depth of the neutral axis at the ultimate limit state. After reading this tutorial, you’ll have a good understanding of how to perform concrete section analysis and basic design.

Beamsolver | DegreeTutors.com

How I Coded an Analytical Beam Calculator

In this post, guest author Vittorio Lora talks us through how he developed the idea for and ultimately built Beamsolver.com. A structural engineer by training, Vittorio has pivoted in his career to focus more on software development. But he couldn’t shake the desire to build the analytical beam calculator that he would have found so helpful as a student. Parameterised structural analysis problems are notoriously difficult to solve algorithmically. Unlike numerical problems, solution techniques based on linear algebra just don’t scale well. Vittorio explains how it was actually the simple techniques we all learn first that ultimately unlocked the problem.

Introduction to concrete | DegreeTutors.com

An Introduction to Concrete and its Strengths and Weaknesses

Concrete is one of the most important and ubiquitous materials in the construction industry globally. Twice as much concrete is used (by weight) as steel, wood, plastics and aluminium combined. Its global usage is estimated at 10 billion tons per year. Fundamentally, concrete is simply a mixture of cement, water, aggregate and sand. When mixed, they form a slurry that undergoes a chemical reaction called hydration and gains strength slowly in a process called curing. In this article, we’ll discuss the properties of concrete, its constituents and what makes it such a versatile construction material.

3D-Spaceframe | DegreeTutors.com

3D Truss Calculator – Quick Start Guide

Welcome to this quick start guide on how to use the 3D truss analysis toolbox. In this tutorial, we’ll work through the solution of a sample 3D space frame (pin-jointed) structure. We’ll determine reaction forces, axial forces and nodal displacements. By the end of this tutorial, you’ll be comfortable using the toolbox to analyse your own structures. In the video accompanying this tutorial, we’ll also use the Blender modelling template file provided to model and analyse a structure from scratch. Like the 2D toolbox, students in particular, should find it helpful as a quick and easy tool for generating structural response data.

An Introduction to Uniform Torsion in Cylindrical Shafts

In this tutorial, we introduce torsion. This is simply a bending moment applied about the longitudinal axis. Torsion will cause twisting about the longitudinal axis and is a very common form of loading. Our starting point will be to explore the concept of strain as it applies to circular bars and to derive an equation that relates the strain to the angle of twist in the bar. Next, we’ll tie shear stress into the story and see how it relates to applied torque and torsional deformation. Finally, we’ll bring everything together with some numerical examples to demonstrate how to deploy the equations we’ve developed.

Moment-Distribution-Method | DegreeTutors.com

How to Analyse Indeterminate Beams using the Moment Distribution Method

In this tutorial we’ll explore the moment distribution method. This is an excellent technique for quickly determining the shear force and bending moment diagrams for indeterminate beam and frame structures. In this tutorial, we’ll focus on applying the moment distribution method to beams. We’ll start by getting a clear understanding of the steps in the procedure before applying what we’ve learned to a more challenging worked example at the end.

The Virtual Work Method | DegreeTutors.com

How to Apply the Virtual Work Method to Trusses

In this tutorial, you’ll learn how to use the virtual work method to analyse trusses and calculate truss deflections. The virtual work method is based upon the Principle of Virtual Work which underpins many elegant and versatile analysis procedures. We’ll focus here on how it can be applied to trusses. This tutorial will initially develop the underlying theory, starting with the concept of strain energy. This will make the jump to virtual work much easier to understand. We’ll bring it all together with a thorough worked example at the end.

Free body diagrams, equilibrium and reaction forces | DegreeTutors.com

How to Calculate Reactions using Free Body Diagrams

In this tutorial, we’ll cover free body diagrams and how to use them to evaluate the forces acting on a structure in equilibrium. A free body diagram is a diagram in which only the forces imposed on an object are shown. Free body diagrams are a simple tool to help us identify all of the forces that influence an object or structure. Typically, one of the first steps in analysing a structure is to sketch out its free body diagram, identifying all of the forces that must be considered in the analysis.